Rigid toric matrix Schubert varieties

نویسندگان

چکیده

Abstract Fulton proves that the matrix Schubert variety $$\overline{X_{\pi }} \cong Y_{\pi } \times \mathbb {C}^q$$ X π ¯ ≅ Y × C q can be defined via certain rank conditions encoded in Rothe diagram of $$\pi \in S_N$$ ∈ S N . In case where $$Y_{\pi }:={{\,\textrm{TV}\,}}(\sigma _{\pi })$$ : = TV ( σ ) is toric (with respect to a $$(\mathbb {C}^*)^{2N-1}$$ ∗ 2 - 1 action), we show it described as (edge) ideal bipartite graph $$G^{\pi }$$ G We characterize lower dimensional faces associated so-called edge cone $$\sigma explicitly terms subgraphs and present combinatorial study for first-order deformations prove rigid if only three-dimensional are all simplicial. Moreover, reformulate this result $$

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toric Degeneration of Schubert Varieties and Gelfand–cetlin Polytopes

This note constructs the flat toric degeneration of the manifold Fln of flags in Cn from [GL96] as an explicit GIT quotient of the Gröbner degeneration in [KM03]. This implies that Schubert varieties degenerate to reduced unions of toric varieties, associated to faces indexed by rc-graphs (reduced pipe dreams) in the Gelfand–Cetlin polytope. Our explicit description of the toric degeneration of...

متن کامل

Ideals Defining Unions of Matrix Schubert Varieties

This note computes a Gröbner basis for the ideal defining a union of matrix Schubert varieties. Moreover, the theorem presented will work for any union of schemes defined by northwest rank conditions. This provides a means of intersecting a large class of determinantal ideals. Introduction We compute a Gröbner basis for the ideal defining a union of schemes defined by northwest rank conditions ...

متن کامل

Toric Varieties

4.1.5. The weighted projective space P(q0, . . . ,qn), gcd(q0, . . . ,qn) = 1, is built from a fan in N = Z/Z(q0, . . . ,qn). Let ui ∈ N be the image of ei ∈ Z . The dual lattice is M = {(a0, . . . ,an) ∈ Z n+1 | a0q0+ · · ·+anqn = 0}. Also assume that gcd(q0, . . . , q̂i, . . . ,qn) = 1 for i = 0, . . . ,n. (a) Prove that the ui are the primitive ray generators of the fan giving P(q0, . . . ,qn...

متن کامل

Multiplicities on Schubert Varieties

We calculate using Macaulay 2 the multiplicities of the most singular point on Schubert varieties on Gl(n)/B for n = 5, 6. The method of computation is described and tables of the results are included.

متن کامل

Large Schubert Varieties

For a semisimple adjoint algebraic group G and a Borel subgroup B, consider the double classes BwB in G and their closures in the canonical compactification of G; we call these closures large Schubert varieties. We show that these varieties are normal and Cohen-Macaulay; we describe their Picard group and the spaces of sections of their line bundles. As an application, we construct geometricall...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebraic Combinatorics

سال: 2023

ISSN: ['0925-9899', '1572-9192']

DOI: https://doi.org/10.1007/s10801-023-01229-3